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Abstract: We propose that every supersymmetric four dimensional black hole of finite

area can be split up into microstates made up of primitive half-BPS “atoms”. The mutual

non-locality of the charges of these “atoms” binds the state together. In support of this

proposal, we display a class of smooth, horizon-free, four dimensional supergravity solutions

carrying the charges of black holes, with multiple centers each carrying the charge of a

half-BPS state. At vanishing string coupling the solutions collapse to a bound system

of intersecting D-branes. At weak coupling the system expands into the non-compact

directions forming a topologically complex geometry. At strong coupling, a new dimension

opens up, and the solutions form a “foam” of spheres threaded by flux in M-theory. We

propose that this transverse growth of the underlying bound state of constitutent branes

is responsible for the emergence of black hole horizons for coarse-grained observables. As

such, it suggests the link between the D-brane and “spacetime foam” approaches to black

hole entropy.
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1. Introduction

String theory has suggested two different pictures of the microstates underlying the en-

tropy of black holes. The first, due originally to [1, 2], describes the underlying states as

fluctuations of complicated bound states of string solitons. These analyses typically apply

at very weak coupling, when there is no macroscopic horizon. A second picture (see the re-

views [3, 4]) suggests that, at least in situations with sufficient supersymmetry, some of the

underlying microstates can appear directly in gravity as a sort of “spacetime foam” [3 – 7],

the details of which are invisible to almost all probes [8].1 In this picture, the black hole

with a horizon is simply the effective semiclassical description of the underlying “foam”.

1For 1/2-BPS states in AdS5 a similar picture has emerged in [9, 10]. Also see the related comments

in [11, 12].
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The present paper suggests how these two pictures are connected for four dimensional

black holes — as the string coupling grows, D-brane bound states that form black hole

microstates grow a transverse size, leading to a gravitational description as a topologically

complex “spacetime foam”.

We provide evidence for this picture by constructing a large class of smooth, horizon-

free, four dimensional supergravity solutions that have the charges of macroscopic black

holes. Our construction proceeds by compactifying the five-dimensional (M-theory on T 6)

solutions of [6, 5]. Typical geometries contain multiple centers, each carrying the charge of a

1/2-BPS state. The geometries are characterized by a region of complex topology contain-

ing a “foam” of spheres threaded by flux. This leads to a proposal: Every supersymmetric

four dimensional black hole can be split up into microstates made of 1/2-BPS “atoms”.

The mutual nonlocality of the charges of these “atoms” binds the solution together.

The geometric structures in our solutions scale as the string coupling is changed. As

the string coupling gs decreases, the region of complex topology shrinks until it is best

interpreted in terms of wrapped D-branes whose separations are proportional to gs. As gs
decreases further, the states can be described in the low-energy quiver gauge theory of a

system of intersecting D-branes, following Denef [13]. Thus we arrive at a picture where

quantum gravity microstates associated to a spacetime with fixed asymptotic quantized

charges go through various transitions as the coupling is changed. Every microstate begins

life at gs = 0 as a ground state of an intersecting D-brane system. As we increase the

coupling, the microstate makes a transition from a quiver gauge theory in the Higgs phase,

to one in the Coulomb phase. As we further increase the coupling, a closed string picture

becomes appropriate and, for states having a classical limit, we obtain the four dimensional

solutions described in this paper. Still further increasing the coupling to large gs opens up

the eleventh dimension and we find a “spacetime foam” in M-theory of two-cycles threaded

by flux [6, 5]. A similar flow from D-branes to “spacetime foam” has been noted in the

topological string [14].

2. Review of five dimensional solutions

Here we review the candidate smooth, horizon-free microstates for black holes and black

rings in five dimensions that were derived in [6, 5]. We will find candidate microstate

solutions for four dimensional, finite area black holes by compactifying these geometries.

Basic setup: M-theory reduced to five dimensions on a 6-torus has 1/8-BPS solutions

that only carry membrane charges. The general ansatz for such solutions was given in [15]

following [16, 17]. The five dimensional non-compact space is written as time fibered over

a pseudo-hyperkahler2 base space (HK) which we require here to have a U(1) symmetry.

The metric takes the form:

ds211 = −(Z1Z2Z3)
−2/3(dt+ k)2 + (Z1Z2Z3)

1/3ds2HK + ds2T 6 , (2.1)

2The metric is hyperkahler but we allow the signature of HK to flip. The overall metric remains non-

singular and of constant signature because the Zi will change sign simultaneously.
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where

ds2HK = H−1σ2 +H(dr2 + r2dθ2 + r2 sin2 θdφ2) . (2.2)

Here k is a 1-form on the hyperkahler base. H is a harmonic function on the flat R3

parametrized by (r, θ, φ) with poles having integer residues. Likewise, σ is a one-form on

R3 (σ = dτ + fadx
a where τ has period 4π) satisfying

⋆3dσ = dH . (2.3)

The Hodge dual ⋆3 acts in the flat R3 only. The metric on the torus is

ds2T 6 = (Z1Z2Z3)
1/3
(

Z−1
1 (dz2

1 + dz2
2) + Z−1

2 (dz2
3 + dz2

4) + Z−1
3 (dz2

5 + dz2
6)
)

. (2.4)

The Zi’s are functions on the hyperkahler base space, and the associated 2-tori have volumes

Vi. The gauge field takes the form:

C(3) = −(dt+ k) ∧
(

Z−1
1 dz1 ∧ dz2 + Z−1

2 dz3 ∧ dz4 + Z−1
3 dz5 ∧ dz6

)

+2 a1 ∧ dz1 ∧ dz2 + 2 a2 ∧ dz3 ∧ dz4 + 2 a3 ∧ dz5 ∧ dz6, (2.5)

where the ai are one-forms on the base space. After reduction on T 6 the C-field leads

to three separate U(1) bundles, with connections Ai = −(dt + k)Z−1
i + 2 ai, on the five-

dimensional total space. Defining Gi = dai, [15] show that the equations of motion reduce

to the three conditions (here the Hodge operator refers only to the base space HK):

Gi = ⋆Gi, d⋆dZi = 2sijkG
j ∧Gk, dk + ⋆dk = 2GiZi, (2.6)

where we define the symmetric tensor sijk = |ǫijk|.

Solution: This system of equations can be completely solved in terms of seven harmonic

functions in addition to H, defined using variables rp = |~x − ~xp|, where ~x is a coordinate

in the R3 appearing in (2.2):

H =
N
∑

p=1

np
rp
, Mi = 1 +

N
∑

p=1

Qpi
4rp

, K = l0 +
N
∑

p=1

lp
rp
, hi =

N
∑

p=1

dip
4rp

. (2.7)

To achieve an asymptotically flat metric, we require the NUT charge

nT =
∑

p

np (2.8)

to equal 1. (The standard radial coordinate for the asymptotic R4 is R = 2
√
r.) At each

point p, the Qpi measure the membrane charges, np sets the Kaluza-Klein monopole charge,

lp measures the angular momentum associated to the U(1) isometry. The dip make contri-

butions to the total 5-brane dipole moment of the solution. In terms of these functions,

the equations of motion can be solved, giving:

Zi = Mi + 2sijkh
jhk/H, ai = (hi/H)σ + aiadx

a, d(aiadx
a) = − ⋆3 dh

i,

k = k0 σ + ka dx
a, k0 = K + 8H−2 h1 h2 h3 +H−1Mi h

i

d(kadx
a) = H ⋆3 dK −K ⋆3 dH + hi ⋆3 dMi −Mi ⋆3 dh

i (2.9)

Requiring the absence of pathologies in these solutions constrains the parameters in various

ways.
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Constraints: The requirement of smoothness (no curvature singularities) constrains

the charges of the harmonic functions:

Qpi = −sijk
djpdkp
2np

, lp =
d1
pd

2
pd

3
p

16n2
p

, l0 = −
∑

i

∑

p d
i
p

4nT
≡ −

∑

i

si

4nT
. (2.10)

It is useful to define

λ̃ip =
(

dip/np − si/nT
)

, Γpq =

∏

i(npd
i
q − nqd

i
p)

n2
pn

2
q

, (2.11)

in terms of which the closure condition for d(kadx
a), which makes kadx

a a globally well

defined one-form, becomes

4
∑

i

npλ̃
i
p +

N
∑

q=1

Γpq
rpq

= 0, p = 1 . . . (N − 1). (2.12)

where rpq = |~xp− ~xq|. While (2.10) constrains the parameters of a smooth solution, (2.12)

determines the relative separations of the poles in (2.7). For a fixed set of charges, there

are N − 1 nonlinear equations relating 3N − 3 variables (after we fix the center of mass),

so if a solution exists for a given set of charges satisfying (2.10), the locations of the

poles supporting the charges will typically be a function of 2N − 2 moduli. We can set

three more free parameters (although these are not completely independent of the charges)

by specifying the angular momentum JL defined below and its orientation. Finally, the

absence of closed timelike curves and horizons in the solution requires that
(

Z1Z2Z3H − k2
0H

2 − gab
R3kakb

)

> 0 (2.13)

must be satisfied everywhere. This condition also guarantees smoothness on the H = 0

surface3 and that the metric has constant signature. It is possible that (2.13) is implied

by (2.12) via some kind of gradient flow argument, but this is not immediately evident.

Charges: The total membrane charges and angular momenta of the solution are:

Qi = −1

2

N
∑

p=1

npsijkλ̃
j
pλ̃

k
p, JR =

N
∑

p=1

npλ̃
1
pλ̃

2
pλ̃

3
p, (2.14)

JL = 4

∣

∣

∣

∣

∣

∣

N
∑

p=1

∑

i

npλ̃
i
p~xp

∣

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∑

pq

Γpq
~xp − ~xq
|~xp − ~xq|

∣

∣

∣

∣

∣

. (2.15)

The solution also carries a net 5-brane dipole moment. Finally, the absence of Dirac strings

in the C-field requires integral quantization conditions:

np,
πΓpq

4G
(5)
N

∈ Z, dip = mi
p/e

i, mi
p ∈ Z, (2.16)

3At H = 0 there is an ergosphere in the solution. However, unlike a rotating black hole there is no

ergoregion.
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with constants

ei =
Vi

(2π)2ℓ3P
,

∏

i

(ei)−1 =
4G5

π
. (2.17)

Appropriate quantization of the membrane charge and angular momenta also imposes

mi
pm

j
p/np ∈ Z, m1

pm
2
pm

3
p/n

2
p ∈ Z . (2.18)

3. Reducing to four dimensions

Type II string theory compactified on a 6-torus has a spectrum of extremal supersymmetric

black holes. The charge vector of these black holes transforms in the 56 representation of

the E7(7) duality group. The entropy associated with the black hole horizons is a function of

the quartic invariant of E7(7) constructed from the charges (see, e.g., [18, 19]). As a result,

to have a finite entropy, these black holes must have at least four charges. Furthermore, a

generating solution whose E7(7) orbit traces out the entire 56 dimensional space of extremal

black holes must have at least five charges, of which one pair must be electric-magnetic

duals [20, 21]. We are interested in finding candidate supergravity microstate solutions for

such a generating black hole.

In the previous section we described a class of candidate microstates for five dimen-

sional black rings and black holes in M-theory having a U(1) isometry. These solutions

carry three M2-brane charges and momentum along the U(1) direction. Upon compactify-

ing along this direction, these charges give rise to D2-branes and D0-branes in IIA string

theory. To carry out the reduction to four dimensions we modify the solution in the previous

section so that the U(1) direction approaches a finite size at infinity. M5-branes can wrap on

this circle leading to three D4-brane charges in IIA string theory. In addition, the now ar-

bitrary NUT charge in the solution leads to D6-brane charge, giving in total eight charges.4

A similar procedure, of placing five dimensional solutions in Taub-Nut, has been used to

relate five dimensional black holes and rings to four dimensional black holes [22, 23]. All of

these charges arise from wrapped D6-branes with fluxes. Since D2s and D4s as well as D0s

and D6s are electric-magnetic duals, these configurations also have the charges necessary

for them to be smooth microstates associated to a finite area, extremal 1/8-BPS black hole.

3.1 Introducing Taub-NUT

The five dimensional solution in section 2 has a direction of U(1) isometry. In order to

reduce on this circle it must approach a finite size at infinity We can accomplish this by

adding a constant to H which effectively places the M2-branes in a Taub-NUT background:

H → H + δH ; δH =
4

L2
. (3.1)

4Given an arbitrary NUT charge nT , the asymptotic solution has topology S3/ZnT
. This allows us to

define three ZnT
valued 5-brane monopole charges. Once we reduce to IIA and the M-circle disappears,

these give rise to regular integer 4-brane charges; shifts of these integer charges by nT are associated with

large gauge transformations of the B-field.
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The asymptotic circumference of the circle is 2πL. We allow the NUT charge (2.8) to be

arbitrary, the full solution (2.1), (2.5) can then be interpreted in terms of M2-branes in a

Taub-NUT background.

In order to ensure gauge invariance under transformations of the C-field it is necessary

to also add constants δhi to the hi harmonic functions. In terms of these shifts it is

convenient to define

λip =
dip
np

− 4δhi

δH
=
dip
np

− L2 δhi, (3.2)

and to re-write the the constant part of K (making sure there are no CTCs at infinity by

bounding the last term) as:

δK =
L4

4

∏

i

δhi − L2

4

∑

i

δhi +
L

2
sinα (3.3)

To achieve a standard locally flat metric at infinity, we set the constant part of Mi to

δMi = 1 − 2sijk
δhjδhk

δH
. (3.4)

We can also set k0 → 0 at infinity by setting α = 0. This is not necessary for getting a flat

asymptotic metric, as we can always set this constant to zero by shifting the coordinate τ

by a function of t. This adds another layer of unnecessary complication (see appendix B

for the full construction), and without loss of generality we will assume that α = 0. We do

require, however, that the derivative of the angular momentum,

dk = d(k0fadx
a) + d(kadx

a) (3.5)

falls off at infinity. This yields the constraint5

∑

p

Ψp = 0, Ψp =
∑

i

npλ
i
p −

1

L2n2
p

∏

i

npλ
i
p. (3.6)

In lifting back to five noncompact dimensions the shifts δhi and δH are set to zero so that

subleading terms in hi and H determine the ratio

lim
r→∞

4hi

H
→ si

nT
. (3.7)

Thus, in the decompactification limit (3.6) is tautological. The integrability condition on

kadx
a becomes

4Ψp +
∑

q

Γpq
rpq

= 0, p = 1 . . . N. (3.8)

5When α 6= 0 there is an additional term proportional to sin α on the right hand side of (3.6). In the

language of D=4, N = 2 supersymmetry, this constraint relates the parameter α in (3.3) with the phase of

the central charge, in a given gauge, of our 1/8-BPS solution (see appendix B). This connection between

the angle α and the asymptotic velocity along the M-direction is typical for black rings (see [23]).
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(Compare with (2.12) in the L → ∞ decompactification limit.) Only N − 1 of these are

independent if we take (3.6) into account. Specifying the angular momentum ~JL provides

three more constraints (JR will be related to the D0-charge):

JR =
∑

p

np
∏

i

λip (3.9)

~JL = −4
∑

p

Ψp ~xp =
1

2

∑

pq

Γpq r̂pq. (3.10)

The second equality for ~JL used the constraint equation (3.8).

3.2 Reduction to IIA

We obtain a solution to IIA string theory by reducing along y = (L/2) τ (y has period

2πL) in terms of dimensionless versions of the eight harmonic functions (Mi is already

dimensionless)

M0 = −HL2/4, K0 = 4K/L, Ki = Lhi. (3.11)

The reduction gives the metric

ds2IIA = −J−1/2
4 (dt+ kadx

a)2 + J
1/2
4

(

ds2
R3 +

3
∑

i=1

(−ZiM0)
−1ds2Ti

)

. (3.12)

The radius of the compactification circle is related to the string length and coupling as

L = gsls (3.13)

The Ti are flat 2-tori with volume forms dVi. The dilaton and form fields are

e2Φ = (J4)
3/2(−Z1Z2Z3M

3
0 )−1, B2 = −

(

Ki

M0
+

2k0

LZi

)

dVi (3.14)

C1 =
L

2
fadx

a − 2M2
0k0

LJ4
(dt+ kadx

a) (3.15)

C3 =

[

−Z−1
i (dt+ kadx

a) + 2~ai −
(

Ki

M0
+

2k0

LZi

)

L

2
fadx

a

]

∧ dVi. (3.16)

J4 is the quartic invariant of E7(7) constructed from the eight harmonic functions connected

to four electric and magnetic “charges” [24]

J4 =
L2

4

(

(Z1Z2Z3)H − k2
0H

2
)

(3.17)

= M0K
0(MiK

i) +M1K
1(M2K

2 +M3K
3) +M2K

2M3K
3

−1

4
(MµK

µ)2 −M0M1M2M3 −K0K1K2K3. µ ∈ 0 . . . 3 (3.18)

We have introduced a new radial variable ρ = 2r/L so that the metric on the R3 piece

takes the standard flat form.
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For the further reduction on the Ti to four dimensions it is useful to define a shifted

3-form field that is invariant under shifts of coordinates in the y circle and the three 2-tori.

C ′
3 = C3 −B2 ∧ C1 =

(−M0

J4
(2Kik0/L− sijk ZjZk/2)(dt+ kadx

a) + 2~ai

)

∧ dVi . (3.19)

The quantized D-brane charges are

QD6
0 =

L

2

∑

p

(−np) =
gsls
2

N6, QD2
i = − 1

2L

∑

p

sijk
djpdkp
2np

= − 4G4 Vi
4π2gsl3s

Ni 2,

Q0
D0 =

1

2L2

∑

p

d1
pd

2
pd

3
p

n2
p

=
4G4

gsls
N0, QiD4 =

1

2

∑

p

dip = 2π2 gsl
3
s

Vi
N i

4 . (3.20)

In our conventions the D0 and D4-branes are magnetic objects while the D2 and D6-branes

are electric. While the charges defined here are quantized, they are not invariant under large

gauge transformations of the B-field because of Chern-Simons terms in the supergravity

Lagrangian. (See [25] for the difference between quantized and gauge-invariant charges.)

In the four dimensional theory we will interpret large gauge transformations of the B-field

as SU(8) transformations inside E7(7). Our sign conventions are consistent with the Hodge

dual relations F6 = ∗F4, F2 = ∗F8. Each of these charges is written as a sum over points p,

and at each point we can interpret the charges as arising from a D6-brane with fluxes on it.

3.3 Reduction to four dimensions and special geometry

E7 structure: Upon reduction to four dimensions, we obtain solutions to N = 8

supergravity [26]. This theory has an E7(7) duality group. The three D2-brane charges and

the D6-brane charge transform in an electric 28 representation of the maximal compact

subroup SU(8)/Z2, while the three D4-brane charges and the D0-brane transform in a

magnetic 28. Together, these charges transform in the 56 representation of E7(7) ; we can

write combined charge vectors with eight of these charges turned on:

Γp =
(

Qp0, Q
p
i , Q

0
p, Q

i
p

)

=

(

−L
2
np,

−1

4L
sijk

djpdkp
np

,
1

2L2

d1
pd

2
pd

3
p

n2
p

,
1

2
dip

)

. (3.21)

Γ =
∑

p

Γp =
(

Q0, Qi, Q
0, Qi

)

(3.22)

(To avoid clutter we leave out the D0, D2 etc. notation in (3.20)). The symplectic E7

invariant constructed from these charges is

〈Γp,Γq〉 =
1

2

(

Q0
pQ

q
0 −Q0

qQ
p
0 +QipQ

q
i −QiqQ

p
i

)

=
Γpq
8L

= G
(4)
N γpq, (γpq ∈ Z). (3.23)

Similarly, we can think of our eight harmonic functions as part of a single harmonic function

valued in the 56 of E7(7) written as (Γ∞ denotes the constant terms):

H =
(

M0, Mi, K
0, Ki

)

= Γ∞ +
∑

p

Γp
ρp
. (3.24)

– 8 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
6

Then the 1-form in (2.9) which gives rise to the angular momentum in the solution satisfies

⋆3d(kadx
a) = ⋆3d~k = 〈dH,H〉 . (3.25)

At this juncture, we see that the reduction of our M-theory solutions down to N = 8

supergravity in four dimensions yields a framework similar to the N = 2 setup in [27 – 29].

In fact, our theory with eight vector fields and six scalars corresponds to a truncation of

the N = 8 theory to the famous STU N = 2 model [30, 35] which corresponds to the

symmetric coset space [SL(2, R)/U(1)]3.

Explicit solution and special geometry: The four-dimensional metric is the obvious

truncation of (3.12)

ds24 = −J−1/2
4 (dt+ ka dx

a)2 + J
1/2
4 ds2

R3 . (3.26)

The four dimensional dilaton is constant, because the volume of the three 2-tori in (3.12)

cancels the spatial dependence of the ten dimensional dilaton in (3.14). The solution has

three complex scalar fields coming from the complexified Kahler moduli of the three Ti
(φi = iVoli + Bi

2). In terms of the explicit ten dimensional solution (3.12), (3.14), the

scalars are

φi = i
−2J

1/2
4

2M0Mi − sijkKjKk
−
(

2MiK
i +M0K

0 −∑jMjK
j

2M0Mi − sijkKjKk

)

, (3.27)

=





∂J
1

2

4

∂Mi
− i

2
Ki





/





∂J
1

2

4

∂K0
+
i

2
M0



 . (3.28)

In the first line there is no sum on i. In the second line the scalars have been written

entirely in terms of the J4 invariant and individual harmonic functions transforming in an

eight-dimensional subspace of the 56 of E7(7). These six scalars are part of the 70 scalars

of the E7(7)/SU(8) coset. Finally, the C3 field and C1 field give 3 + 1 vectors (the above

three vector multiplets plus the graviphoton) which transform, along with their duals, in

the same subspace of the 56 representation as the harmonic functions. The potentials and

their duals can be summarized in a single vector as

~A =
(

~A0, ~Ai, ~A0, ~Ai
)

, (3.29)

with components from reducing C ′
3 and C1:

~Ai = − 1

J4

∂J4

∂Mi
(dt+ kadx

a) + 2~ai, ~A0 = +
1

J4

∂J4

∂K0
(dt+ kadx

a) + 2~a0, (3.30)

and their duals:

~Ai = +
1

J4

∂J4

∂Ki
(dt+ kadx

a) + 2~ai, ~A0 = − 1

J4

∂J4

∂M0
(dt+ kadx

a) + 2~a0. (3.31)

The magnetic parts of these potentials are concisely written as:

d~a =
(

d~a0, d~ai, d~a
0, d~ai

)

= − ⋆3 dH. (3.32)
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E7(7) and more general solutions: The solutions presented above have four vector

fields and six scalars, corresponding to a truncation of the the full N = 8 theory to the

N = 2 STU model [35]. More generic four dimensional solutions with arbitrary charges can

be obtained by generalizing the above, allowing the harmonic functions (3.24) as well as

the indivdual charge vectors (3.21) to occupy the full 56 of E7(7). Typically, however, the

most general configurations of this type will break supersymmetry. Since we are interested

in 1/8-BPS states, our charges always need to line up with a preferred N = 2 subalgebra,

corresponding to the reduction of E7(7) to SO∗(12)×SU(2)R (for more details see [31 – 33]).

For such configurations, the appropriate charge subspace for supersymmetry yields vectors

(and harmonic functions) which transform in the real 32 spinor representation of SO∗(12),

accompanied by thirty non-trivial scalars. The remaining forty scalars of the N = 8 theory

appear as hypermultiplet scalars with respect to the N = 2 truncation, parameterizing the

coset E6(2)/SU(2)R × SU(6). Their values stay fixed throughout our solutions, and are

generally constrained by the alignment of the subgroup SO∗(12) × SU(2)R inside E7(7).

Generalized constraint and coarse graining: For general charge vectors Γp the

constraint equation (3.8) can be appropriately generalized by requiring integrability (3.25)

as before. Then, in terms of a symplectic product of the charges and the asymptotic values

of the harmonic functions (3.24),

〈Γp,Γ∞〉 +
∑

q

〈Γp,Γq〉
ρpq

= 0. (3.33)

The first term automatically provides an expression for the Ψp’s and summing these equa-

tions provides the first of the two constraints on Γ∞,

〈Γ,Γ∞〉 = 0, I4 (Γ∞) = 1, (3.34)

which tell us that the asymptotic scalars sit in the appropriate coset.

In the form above, the constraint equation also gives us an insight into the behavior

of the solution if we “coarse-grain” over a collection of charges by collecting them into a

single pole. For example, let us partition our poles into sets P containing poles seperated by

distances much smaller than some reference scale, Λ. Then we can define a coarse-grained

solution by assigning the total charge of each cluster P to the mean location of the poles

in the cluster:

ΓP =
∑

p∈P

Γp, ~xP ∼ 〈~xp〉 . (3.35)

The constraints on the coarsened solution are then:

〈ΓP ,Γ∞〉 +
∑

Q

〈ΓP ,ΓQ〉
ρPQ

≪ Λ. (3.36)

An important feature of this coarse-graining is that if a cluster of poles P has the property

that 〈ΓP ,Γ∞〉 = 0, then this cluster can be placed at an infinite distance from the rest of

the poles, distinguishing our supergravity solution as one generated by at least two separate

bound states.
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The maximally coarse-grained solution replaces the detailed microstate by a solution

with a single pole carrying the total charge vector of the spacetime. Below we will show

that such single-pole solutions are black holes of the N = 8 supergravity and will in general

have a finite horizon area.

3.4 Relation to finite area black holes

We would like to understand how the solutions described above can be seen as candidate

microstates for the extremal black holes of N = 8 supergravity. Far away from all the

poles, the harmonic function H can be well approximated by the single center function

H̄ = Γ∞ +
Γ

ρ
(3.37)

where Γ is the total charge vector defined in (3.22). Plugging this simplified function into

our formulism yields a metric with no angular momentum6 and

J4(ρ) = I4(Γ)ρ−4 , (3.38)

where I4(Γ) comes from expression (3.17) for J4 after we substitute in the appropriate

charge for each harmonic function. If I4(Γ) > 0, this is simply the spherically symmetric

metric of a 1/8-BPS black hole with total charge vector Γ and horizon area given by

A = 2π
√

I4(Γ) . (3.39)

If I4(Γ) < 0 (the null case will become clear later), we have taken our coarse-graining

procedure too far, and need to retreat back until we only have centers with I4(ΓP) ≥ 0.

The astute reader can recognize I4 as Cartan’s quartic E7 invariant [18, 19, 5, 34]. In

terms of the antisymmetric central charge matrix zij = xij + iyij of N = 8 supergravity,

this invariant is written as

4I4 =
xijyijx

klykl
4

−xijykjxklyli−
1

96
(ǫijklmnopxijxklxmnxop+ǫijklmnopy

ijyklymnyop) . (3.40)

Here indices are raised and lowered by δij . In our conventions7

x12 = Q1 ; x34 = Q2 ; x56 = Q3 ; x78 = Q0 (3.41)

y12 = Q1 ; y34 = Q2 ; y56 = Q3 ; y78 = Q0 (3.42)

For a solution with only the D2 (D4) and D6 (D0) brane charges, the expected horizon

area of the associated black hole is

D2 − D2 − D2 − D6 area : A = 2π

√

−Q0

∏

i

Qi (3.43)

D4 − D4 − D4 − D0 area : A = 2π

√

−Q0
∏

i

Qi (3.44)

6Non-zero angular momentum is contingent on keeping at least a dipole moment when approximating

H.
7The J4 invariant in [19] differs by a factor of 4 from the one here, and charge conventions there are

related to the present ones by a factor of
√

2 and sign flip of the D6-brane charge.
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The sign under the square root indicates that the D6 (D0) must be appropriately oriented

relative to the D2 (D4) branes to preserve supersymmetry [21]. If electric and magnetic dual

objects are present, other terms in I4 will also contribute. The space of all extremal finite

area black holes in N = 8 supergravity can be generated by E7(7) transformations of gen-

erating configurations with five charges containing one electric-magnetic pair [31, 21, 19].

An example generating configuration contains three D2-brane, D6-brane and D0-brane

charges. Such charge vectors are included in our analysis and thus the solutions described

earlier in this section provide candidate microstates for the generating black holes of N = 8

supergravity.

It is interesting to ask whether a charge vector of the form (3.21) associated to a single

pole in the solution could have given rise to a finite horizon area by itself. Knowing the

leading behavior of the functions Zi, k0 and H it easy to show that

lim
~x→~xp

J4 ∝ ρ−1
p ⇒ I4(Γp) = 0. (3.45)

We can also check that the invariant I4(Γp) vanishes in this case by using the conven-

tions (3.41), (3.42) and the single pole charge vector as given in (3.21). Thus, a black hole

carrying the charges of a single pole in our solutions (3.21) would have vanishing horizon

area and entropy. In fact, the growth of J4 near one of our “primitive” poles tells us even

more. In [21] the authors distinguish four kinds of BPS black holes in N = 8 supergravity.

One can find examples for each of these by once again looking at configurations with just

D2 and D6-brane charge:

D2 −D2 −D2 −D6 6= 0 : 1/8 BPS, I4 > 0, J4 ∝ ρ−4, (3.46)

D2 −D2 −D6 6= 0 : 1/8 BPS, I4 = 0, J4 ∝ ρ−3,

D2 −D6 6= 0 : 1/4 BPS, I4 = 0, ∂I4 = 0, J4 ∝ ρ−2,

D6 6= 0 : 1/2 BPS, I4 = 0, ∂I4 = 0, ∂∂|AdjI4 = 0, J4 ∝ ρ−1.

The notation with ∂’s is impressionistic, see [21] for more detail. Thus, the rate of growth

of J4 yields a simple U-duality invariant method for determining how much supersymmetry

is preserved by a given black hole or pole in a multi-pole configuration.

It has been shown on general grounds that to be associated to a finite horizon area, the

charge vector of a black hole in N = 8 supergravity can preserve at most four supercharges

— such states, including solutions with general 2-brane and 6-brane charges are 1/8-BPS.

By contrast, the classification above tells us that charge vectors of individual poles in our

solutions are all 1/2-BPS. Another simple way of seeing this is to note that the charges

in (3.21) are consistent with having −np 6-branes with worldvolume fluxes turned on in the

12, 34, and 56 directions. The Chern-Simons couplings on the brane would then precisely

reproduce the 4-brane, 2-brane and 0-brane charges given in (3.21). Such states of 6-branes

with fluxes are known to be 1/2-BPS, they are T-dual to IIB 3-branes at angles on a T 6.

Previous work has shown how certain supersymmetric black holes could be thought

of as single center marginal bound states of 1/2 BPS objects later understood to be D-

branes [35 – 38]. Indeed the four classes of solutions in (3.46) correspond precisely to the
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four types of axion charges appearing in [35 – 38]. In our work, the component 1/2 BPS

states are spatially separated and are held together in a true bound state because of their

nonzero intersection numbers.

E7(7) transformations of microstates: In general, we can use an E7(7) transformation

to take any finite area 1/8 BPS black hole of N = 8 SUGRA with all 56 charges to one

with only the eight charges of the STU model [31, 35], with scalars in [SL(2, R)/SO(2)]3.

As we mentioned above, we can further use the three compact SO(2)’s of the STU models

to eliminate8 three more of the charges to get, for example, a model with just D2-D2-D2-

D6-D0 charges. Recall, however, that the proposed microstates for such a black hole will

contain a large number of poles with individual charge vectors. Even if the overall black hole

charges fall within the STU sector, the charges of the component poles in the underlying

microstates will not be restricted in this way since there is not sufficient symmetry to

rotate each pole individually; they will typically all lie in different subspaces of the spinor

of SO∗(12) [33].

3.5 Summary and proposal

In this section, we reduced a class of smooth candidate microstate solutions for supersym-

metric five dimensional black holes and rings to microstates for four dimensional black holes

with eight charges. These spacetimes were written as multi-center solutions in which each

center served as a 1/2-BPS “atom” for building up the full configuration. The bound state

nature of the overall solution was maintained by the mutual non-locality of the charges

which led to constraints on their relative positions. This motivates a conjecture:

Every supersymmetric 4D black hole of finite area, preserving 4 supercharges,

can be split up into microstates made of primitive 1/2-BPS “atoms”, each

of which preserves 16 supercharges. In order to describe a bound state, these

atoms should consist of mutually non-local charges.

The next section provides evidence for this picture.

4. From spacetime foam to D-branes

In [39 – 43] the entropy of four dimensional black holes of finite area was accounted for

in terms of D-brane bound state degeneracies. The basic strategy was to use D-branes

to count the states in the gs → 0 limit and then extrapolate back to stronger coupling

using supersymmetry. As such the microstructure of the black hole arose from the many

degenerate ground states of the D-branes wrapped on the internal space, in our case T 6.

The picture offered above suggests instead that the entropy of the black hole arises from

structure in the non-compact four dimensions of spacetime. This is more along the lines

of the proposals of Mathur and collaborators [44 – 46]. In this section we demonstrate how

these two approaches to black hole entropy could be reconciled. The classical supergravity

8Actually, the full quantum theory has a more restricted U-duality group which only allows us to reduce

the D4-brane number charges to be in the interval 0 . . . (N6 − 1), this is the IIA manifestation of the fact

that M-theory on Taub-NUT has ZN6
torsion charges for M5-branes.
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solutions that we have found flow at weak coupling to systems of intersecting branes of

the sort originally used in [39 – 43] to count black hole microstates. This suggests that

the ground states of such coincident branes at vanishing gs flow at weak gs to the four

dimensional supergravity solutions that we have described and at strong gs to a spacetime

foam in M-theory. Evidence for this picture exists in the analysis of flows of BPS brane

bound states discussed by Denef [13].

4.1 A scaling relation

The locations of the centers in each four dimensional geometry in section 3 are determined

by the constraint equation (3.8). We can examine how these solutions change as

gs → βgs (4.1)

while we hold the volume of the torus fixed in string units

∏

i Vi
l6s

= fixed . (4.2)

The quantized charges of the branes, constructed from the integers np and mi
p (2.16) are

held fixed, and thus the physical charges (3.20) scale in powers of β. Putting everything

together, under the rescaling (4.1), the constraint equation (3.8) becomes

4Ψpβ + β3
∑

q

Γpq
rpq

= 0 . (4.3)

Thus, given a set of separations {rpq} that solve the constraint equation for a string coupling

gs, the set of separations {β2rpq} solves the constraints for a coupling βgs. The physical

separations are

ρpq =
2rpq
L

(4.4)

and these scale linearly with gs:

ρpq → βρpq. (4.5)

In order to continue to satisfy the no-CTC condition (2.13) we must also scale the coordi-

nate ρ as

ρ→ βρ. (4.6)

This scaling has far reaching consequences. As we go to weaker coupling, the branes move

closer together in string units. At some value of the coupling the branes will move within

a string length of each other and the appropriate description is in terms of the open strings

on the branes.

To estimate when the open string picture becomes valid, first consider the two-center

case. Define the dimensionless quantity

ψp = (gsls)
−1Ψp . (4.7)
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The branes will be much closer than a string length apart when9

gs ≪
1

32π6

∏

i Vi
l6s

∣

∣

∣

∣

ψ1

γ12

∣

∣

∣

∣

. (4.8)

When all brane separations are roughly of the same order we can estimate that all pairs of

branes are closer than the string length when

gs ≪
1

32π6

∏

i Vi
l6s

∣

∣

∣

∣

ψp
γpq

∣

∣

∣

∣

∀ψp, γpq . (4.9)

For a general bound state, there will always be a value of gs small enough that all branes are

separated by distances smaller than the string length. For such small gs the supergravity

solutions described in section 3 are better described in terms of open string degrees of

freedom coming from the D-branes.

Going the other way, as gs increases, the intervals between the IIA D-branes in the

solution increase until, at large coupling the IIA description is no longer valid. At that

point we move to an M-theory description with the multi-center D-brane solution replaced

by a network of two-cycles (“bubbles”) we call spacetime foam. The new reference length

becomes the 11-dimensional Planck length; the size of the asymptotic circle in Planck units

now becomes a dimensionless modulus like all the others. Recently, a similar flow from

D-branes to “spacetime foam” has been noted in the topological string [14].

4.2 The open string picture

When D-branes are much closer than a string length, an open string description is appro-

priate. The vacua of the brane system can be analyzed just in terms of the low-energy field

theory on the D-branes if the massive string excitations can be integrated out. This is the

case when all the brane separations are less than ls and when all the charge vectors are

sufficiently closely aligned. Taking these conditions to be satisfied, we will describe how

the supergravity states in section 3 appear as vacua of a D-brane gauge theory when gs is

sufficiently small. In this section, we will set ls = 1.

First consider a single center with charge vector Γp = Np Γ̂p where Np is the greatest

common divisor of the charges appearing in Γp, and Γ̂p is thus a primitive charge vector.

This represents a stack of Np D-branes wrapping T 6. When the torus is small (as we

take it to be), the low energy physics is obtained by dimensionally reducing the D-brane

gauged field theory to a gauged quantum mechanics. Thus the latter has the field content

of dimensionally reduced N = 4, d = 4, U(Np) super-Yang-Mills theory. However, since

the interactions between different stacks of branes will only preserve four supercharges,

it is convenient to decompose into multiplets of N = 4, d = 1 Yang-Mills, obtained via

dimensional reduction of an N = 1, d = 4 theory. This gives one vector multiplet and

three adjoint chiral multiplets. The vector multiplet contains three real, adjoint scalars –

these parametrize the positions of the stack of branes in the non-compact space. The three

9Recall in the two-pole case, with α = 0, the constraint (3.6) sets Ψ1 = −Ψ2.
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complex adjoints parametrize Wilson lines on the 6-branes (or positions within the torus

after T-duality).10

In addition, stacks of branes with integer intersection number γpq 6= 0 (3.23) give

rise to |γpq| chiral fields φpq charged in the bifundamental of U(Np) × U(Nq) [47 – 49]. If

γpq = 0, i.e. if the charge vectors Γp and Γq are mutually local, then bifundamentals for

these branes only appear in chiral and anti-chiral pairs. There is a Higgs term coupling

these bifundamentals to the massless adjoint multiplets on each of the two branes. In a

generic bound state, however, mutually local charge vector pairs will occur rarely. Hence

we will focus on situations where γpq 6= 0∀p, q.
Thus, the low-energy field theory describing the system of branes at small gs is a

d = 1, N = 4 quiver quantum mechanics constructed as follows:

1. For each stack of D6-branes at point p with charge vector Γp we associate a U(Np)

gauge group and vector multiplet. Here Γp = Np Γ̂p where Np is the GCD of the

charges in Γp and Γ̂p is primitive. The three real, adjoint scalars (~x) in the vector

multiplet correspond to location in the R3 transverse to the branes.

2. The number of bifundamental chiral fields φpq (transforming in the (N̄p, Nq) of

U(Np) × U(Nq)) between branes p and q is given by the intersection number γpq.

3. Since each charge vector Γp corresponds to a 1/2-BPS state, we will also get at each

node the remainder of an N = 4 vector multiplet: three adjoint chiral multiplets.

These will mostly play a spectator role in our considerations.

The general Lagrangian for the vector multiplet, the bifundamental chiral multiplet and

their couplings is given in appendix C of [13]. The terms arising from the additional chiral

adjoints can be determined by dimensional reduction of the N = 4, d = 4 Lagrangian. For

determining the vacua and phases of the theory, we need to know how these additional fields

contribute to the D-term and F-term equations and to the masses of the bifundamentals.

The FI-term in the Lagrangian takes the form [13]

LFI =
∑

p

Fp TrDp , (4.10)

where Dp is the auxiliary adjoint field in the U(Np) vector multiplet. Fp is linear in the

charges and depends on closed string field values. It only couples to the D-term for the

diagonal U(1) of U(Np). This is consistent with the notion that if we just slightly separate

our stack into two stacks, U(Np) → U(Np1) × U(Np2), then Fp = Fp1 = Fp2 .
Since the adjoint chirals are neutral under the diagonal center-of-mass U(1) they can-

not couple to the corresponding D-term and hence to the D-term equation which will most

10Under T-duality of the torus, the 6-branes we are describing can be transformed to a system of wrapped

3-branes. The worldvolume theory of these branes consists of a N = 4, d = 4 vector multiplet which

decomposes into a vector multiplet of N = 1, d = 4 Yang-Mills and three adjoint chiral multiplets. The real

parts of these adjoint scalars parameterize positions in the non-compact space, while the imaginary parts

describe positions on the torus. Upon dimensional reduction, the real parts of the d = 4 adjoints become

the three real scalars in the N = 4, d = 1 vector multiplet. The imaginary parts of the d = 4 adjoints pair

up with the Wilson lines on the 3-brane to build the three adjoint chiral multiplets of the d = 1 theory.
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Figure 1: A sample quiver with two nodes.

interest us; they only contribute to the other Np − 1 equations coming from the SU(Np)

D-terms. What is more, up to at least quadratic order, the adjoint scalars do not have

Higgs couplings to chiral bifundamentals which are not paired to anti-chiral ones. To see

this, consider a pair of branes with bifundamentals running between them. The pair can be

T-dualized to give two 3-branes at angles in IIB string theory. In this context, the expec-

tation values of the adjoint scalars in the quantum mechanics Lagrangian parameterize the

positions of the 3-branes on T 6 and the Wilson lines in the branes. Neither of these affect

either the number of intersections between the branes, or the spectrum of strings localized

at the intersection points. Hence there are no Higgs couplings up to at least quadratic

order between the adjoint and the bifundamental chiral fields. Finally, the potential for

the adjoint chiral multiplets is inherited from N = 4, d = 4 Yang-Mills and simply forces

the adjoints to commute on the vacuum manifold.

Hence, for the purpose of studying the phases and vacua of our quiver quantum me-

chanics, we can largely ignore the adjoint chiral multiplets. Fortunately, the remaining

problem is identical to the one studied by Denef in [13] and in section 4.3 we simply adapt

his analysis to our situation. The vacuum manifold of the quiver quantum mechanics can

have a Coulomb branch in which the vector multiplet scalars (~xp) have expectation values,

and a Higgs branch in which the chiral multiplet scalars φpq are given VEVs. We will study

each in turn and discuss how the supergravity states in section 3 appear in the Coulomb

branch and how they can flow into the Higgs branch as gs → 0.

An example black hole microstate: Before proceeding it is worthwhile to give an

example showing that quivers exist with charges appropriate for being microstates of black

holes with finite area. Since each D-brane center is 1/2-BPS we will require a minimum of

three nodes in the quiver (see section 3.4). The conditions to be satisfied are:

1. All charges and charge vectors must be appropriately quantized (1/2-BPS in the case
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of individual centers).

2. J4(Γ) > 0 where Γ is the total charge vector so that the collection has the charges to

be a candidate microstate for a finite horizon area black hole.

3. There exist solutions of the constraint equations (3.33) that also satisfy the triangle

inequalities for brane positions. This is the only one of our conditions which depends

on the asymptotic moduli.

Working in units such that ei = 1, ∀i and L = 1 (this sets G
(4)
N = 1/8), the charge vectors

can be written Γp = 1
2(Np

0 , N
p
i , N

0
p , N

i
p), i = 1 . . . 3 (3.21), where as before theN charges are

quantized. We will also specialize to diagonal 2 and 4-brane charges (i.e. N i
p = Np, N

p
i =

Np, ∀i). An example quiver meeting our requirements arises from the charge vectors

Γ1 =
1

2
(6, 0, 0, 0), Γ2 =

1

2
(−1,−1, 1, 1), Γ3 =

1

2
(−2,−2,−2,−2). (4.11)

The total charge vector and J4 invariant are

Γ =
∑

p

Γp =
1

2
(3,−3,−1,−1) ; J4(Γ) = 71/16 = 71 ·

(

2G
(4)
N

)2
> 0 . (4.12)

The intersection numbers

γ12 = −6, γ23 = −16, γ31 = −12, (4.13)

indicate that we have closed loops in the quiver.

For such a closed loop there exists a simple “scaling solution” [13] where the centers con-

verge on each other with separations limiting to a set congruent with the triangle made up of

the γpq’s. This is independent of the value of the asymptotic moduli set by our choice of Γ∞.

4.3 Gauge theory analysis

The results of [13] are expressed in the language of N = 2 supergravity, in terms of the

central charge associated to each brane in the quiver. In appendix A the central charge of

the pth brane is shown to be

Zp =
L

2
np −

1

2L

∑

i,j,k

sijk
2
npλ

j
pλ

k
p +

i

2
Ψp. (4.14)

In terms of Zp the mass of the brane is

mp =
|Zp|
4G4

(4.15)

and we can write

Zp = |Zp|eiαp ; sinαp =
ImZp
|Zp|

. (4.16)

The total central charge is

Z =
∑

p

Zp ; Z ≡ |Z|eiα ; sinα =
ImZ

|Z| . (4.17)
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In our solutions the constraint (3.6) leads to α = 0.11 In the field theory analysis below

the parameter

θp =
Im(e−iαZp)

4G4
= |Zp|

sin(αp − α)

4G4
≈ |Zp|

(αp − α)

4G4
(4.18)

will play a role. The last approximate equality holds when the phases of all the branes are

nearly equal, as required for a field theory analysis to be valid. Since we are working with

solutions with α = 0, this means that all the αp are small also. Thus

sinαp ≈ αp =
ImZp
|Zp|

. (4.19)

Putting everything together,

θp ≈
Ψp

8G4
. (4.20)

Armed with these quantities we can adapt Denef’s results [13] to our setting.

We will consider quivers that do not contain closed loops. This ensures that the

bifundamental chiral multiplets do not have a superpotential and hence analyzing the D-

term equations is sufficient to determine the vacuum structure. Also, for simplicity, we will

begin by taking Np = 1 (a U(1) gauge theory) at each quiver node. The non-Abelian case

will follow from this. For an abelian quiver (Np = 1,∀p) without closed loops the relevant

part of the bosonic effective Lagrangian is [13]:

Leff =
∑

p

[mp

2
D2
p − θpDp

]

+
∑

p<q

|γpq |
∑

a=1

[

|F apq|2 −
(

|~xp − ~xq|2 + (Dp −Dq)(−1)spq
)

|φapq|2
]

.

(4.21)

Here ~xp and Dp are the three scalar fields and the auxiliary field of the pth vector multiplet,

φapq are the |γpq| bifundamentals charged under U(1)p × U(1)q, F
a
pq are the corresponding

auxiliary fields, and

spq = sign(γpq) . (4.22)

We have left out the standard kinetic terms and fermionic pieces. If some of the Np > 1,

additional commutator terms and appropriate traces are required.

Coulomb branch: When the vector multiplet scalars are given an expectation value,

the bifundamental fields between the branes at p and at q have a mass

(

mφ
pq

)2
= |~xp − ~xq|2 + (Dp −Dq)(−1)spq . (4.23)

The fermionic partner of φapq has a mass (see appendix C of [13])

(

mψ
pq

)2
= |~xp − ~xq|2 . (4.24)

Thus the fields in the chiral multiplet can be integrated out to give an effective Lagrangian

for the fields in the vector multiplet. We are particularly interested in terms that are

11A non-zero overall phase is easily restored by including solutions that carry a velocity along the Taub-

Nut direction, i.e. by allowing a total charge vector Γ such that α̃ 6= 0.
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linear in Dp since these make up the Fayet-Iliopoulos parameter whose vanishing gives the

condition for supersymmetry. Fortunately, a non-renormalization theorem guarantees that

this will be exact at one-loop. The bosonic effective Lagrangian for the vector multiplet at

one-loop order in the chiral multiplet is

LVeff =
∑

p

[mp

2
D2
p − θpDp

]

+
∑

p<q

|γpq |
∑

a=1

ln det

[ −∂2
t + |~xp − ~xq|2

−∂2
t + |~xp − ~xq|2 + (Dp −Dq)(−1)spq

]

.

(4.25)

The determinants are standard and give

LVeff =
∑

p

[mp

2
D2
p − θpDp

]

+
∑

p<q

|γpq|
(

|~xp − ~xq| −
√

|~xp − ~xq|2 + (Dp −Dq)(−1)spq

)

.

(4.26)

The D-term equation (∂LVeff/∂Dp)|Dp=0 = 0 gives

∑

q

γpq
2 |~xp − ~xq|

= −θp , (4.27)

which, when combined with (4.20), gives the supersymmetry conditions

∑

q

γpq
|~xp − ~xq|

= − 1

4G4
Ψp . (4.28)

The solutions to this equation form the moduli space of supersymmetric vacua in the

Coulomb branch. Now recall that our supergravity solutions satisfy a constraint equation
∑

p Γpq/rpq = −4Ψp (3.8). Recalling the relation (3.23) between Γpq and the integer inter-

section numbers γpq, as well as the relation (4.4) between rpq and the physical separations

ρpq, the supergravity constraint becomes

∑

p

γpq
ρpq

= − 1

4G4
Ψp . (4.29)

It is beautiful that (4.28) and (4.29) match identically. This precise match teaches us that,

following the scaling relation in section 4.1, as gs decreases each supergravity solution in sec-

tion 3 flows smoothly into a corresponding solution in the gauge theory Coulomb branch.12

Higgs branch: The scaling relation in section 4.1 applies equally to the Coulomb branch

equation (4.28). Hence, after our states have flowed into the Coulomb branch, a reduction

of gs will cause a further decrease in |~xp− ~xq|, and with it the mass of the chiral multiplet.

If this mass becomes too small, the field cannot be integrated out. To study when this

happens, we can eliminate the auxiliary field Dp from (4.21) via its equation of motion and

find the mass of φapq:

(mφ
pq)

2 = |~xp − ~xq|2 +

(

θp
mp

− θq
mq

)

(−1)spq

= |~xp − ~xq|2 + 4G4(αp − αq) (−1)spq . (4.30)

12Strictly speaking, in situations where some brane separations are much larger than others, parts of the

solution can flow into the Coulomb branch while other parts remain better described in supergravity.
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For charge vectors admitting bound states one can show from (3.8) that for every p there

is at least one q such that (θp − θq)(−1)spq < 0.13 For such pairs, the mass of the bifun-

damentals φapq will vanish and then become negative when |~xp − ~xq| is sufficiently small.

In view of the scaling relation in section 4.1, this means that as gs → 0 some of the bi-

fundamental chiral multiplets will become massless and then condense, taking the theory

into the Higgs branch. Near the condensation point these fields are light and cannot be

integrated out as in the analysis of the Coulomb branch. Indeed, since we are dealing

with a one-dimensional effective Lagrangian, the wavefunction of a state can have a spread

that overlaps the classical Higgs and Coulomb branches.14 We will not attempt the full

quantum mechanical treatment of the wavefunction here (see [13] for some details) and

instead analyze the classical Higgs branch that arises when the φapq have large VEVs.

In the classical Higgs branch, the vector multiplet scalars are set to zero — they acquire

a mass from the Higgs mechanism and can be integrated out. From (4.21), the D-term

equation (∂LVeff/∂Dp)|Dp=0 = 0 for supersymmetry gives the condition

∑

q

|γpq |
∑

a=1

|φapq|2(−1)spq = −θp, ∀p . (4.31)

The solutions to this equation define the Higgs branch vacuum manifold. For example,

if the quiver only has two nodes the vacuum manifold is CP |γpq |−1. In general we obtain

some intersection of complex projective spaces. A simple ansatz for solving these equations

is to take all the bifundamentals between nodes p and q to have the same VEV

φapq ≡
1

2Rpq
, ∀a . (4.32)

Then (4.31) becomes
∑

q

γpq
2Rpq

= −θp . (4.33)

Remarkably, this precisely reproduces the vaccum equation in the Coulomb branch (4.27)

and the constraint equation in supergravity (4.29), suggesting how the classical moduli

space of solutions can flow between these phases as gs changes.

Matching the Coulomb and Higgs branches: At face value the classical Coulomb

and Higgs branches each contain data that is absent in the other. In the Higgs branch, the

φapq can each have independent VEVs and the ansatz (4.32) seems to only explore a sim-

ple subspace of the moduli space which reproduces the Coulomb branch. In the Coulomb

branch the bifundamentals have been integrated out and the only piece that remains from

their data are the multiplicities |γpq|. On the other hand, in the Coulomb branch, any so-

lution to the constraints (4.29) must additionally satisfy triangle inequalities for the VEVs

ρpq = |~xp − ~xq| (ρpq + ρql ≥ ρpl). These additional consistency conditions on a solution

13One can readily argue that if for some p, (θp − θq)(−1)spq ≥ 0, ∀q then there is no solution to the

constraint equation (3.8) or (4.28) for finite rpq.
14Such overlaps were discussed in various contexts in [13, 50 – 52].
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arise because the ~xp transform as vectors of SO(3), the four dimensional rotation group.

It is important to understand how such triangle inequalities can arise in the Higgs branch,

since the D-term equations do not imply them. The bosonic fields φapq whose VEVs define

the Higgs vacuum manifold are invariant under SO(3). However, the fermionic partners of

φ, produced by the action of a supercharge on φapq, transform in a spinor of SO(3). This

suggests that there is a further consistency condition on the Higgs branch vacua involving

these fermions and the bosonic VEVs, but we have not identified this condition here. In

addition, there is an SU(2) action, called the Lefschetz SU(2), on the cohomology of any

Kähler moduli space. The latter is determined completely by the defining equation of the

variety (4.31). Relating the Lefschetz SU(2) to the spatial rotation group in the Coulomb

branch, it seems possible that the triangle inequalities appear as some kind of global inte-

grability condition on the manifold specified by values of φapq solving the D-term equations.

If the vacua in the Higgs and Coulomb branches can flow into each other as we are

advocating, a minimal requirement is that the number of vacuum states in each branch

should be equal. In the Higgs branch we must count the ground states of supersymmetric

quantum mechanics on the classical moduli space (4.31). These are well-known to be in

correspondence with the Dolbeault cohomology classes of the moduli space. Thus the

number of supersymmetric ground states in the Higgs branch equals the sum of Betti

numbers of the moduli space. For quivers without closed loops (and without extra adjoint

matter) there is a formula from Reineke that computes these [53]. The corresponding

problem in the Coulomb branch involves quantizing the motion of charged particles in the

presence of monopoles (mutually nonlocal charges), and counting the resulting Landau

levels. This has been done in some cases by Denef [13] and exactly matches the count

of states in the Higgs branch. Interestingly, identical particle-monopole problems have

appeared in recent approaches to counting the states of black holes and in the relation of

such counting problems to topological string theory [54 – 56].

Finally, in our analysis we have separately studied the classical Higgs and Coulomb

branches. In order to explicitly see a flow between them, we should construct the wave-

function in our quantum mechanical system and observe how it flows with changes of the

coupling. Again, we refer to [13] for a detailed analysis in instructive special cases.

Non-abelian generalization and including adjoint chiral fields: We have focused

on the case where all the Np = 1. For more general values of Np, we need to take a look

at the effect of including the non-abelian SU(Np) degrees of freedom. For each node in

our quiver, we split the set of Np independent D-term equations into a singlet equation

corresponding to the D-term in the center-of-mass U(1) and Np−1 extra equations coming

from the remaining SU(Np−1) D-terms. The singlet equation is the only one which includes

the FI term (Fp) and the adjoint scalars (Xi
p, i = 1, 2, 3) do not appear; solving the singlet

equations will thus involve exactly the same exercise as before. The SU(Np) equations take

the form, written using the generators tαp (α = 1 . . . N2
p − 1) [57]:

∀α :
∑

q

|γpq |
∑

a=1

Tr
(

tαpφ
a
pqφ

a†
pq

)

(−1)spq = −
3
∑

i=1

Tr
(

tαp [Xi
p, X̄

i
p]

2
)

. (4.34)
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These additional equations reflect the fact that a collection of Np of our “atoms” is only

classically situated at the single center which our singlet D-term equations see; quantum

mechanically the Np identical branes form a cloud of particles whose features are controlled

by the same matrix Lagrangian that describes the interactions of Np D0-branes [58, 59].

One of the key features of the D0-brane matrix Lagrangian is the condition that

[Xi, Xj ] = 0 ∀i 6= j , (4.35)

which comes from minimizing the potential for the adjoint scalar fields. Since the adjoint

chiral fields couple to the chiral bifundamentals through (4.34) we expect the bifunda-

mentals to affect the internal dynamics of each “cloud” of Np particles in some significant

fashion; perhaps the perturbations in each cloud will be correlated via the singlet equations.

This analysis is beyond the scope of our discussion, but we expect that the SU(Np) degrees

of freedom will be important in giving the black hole its finite entropy and spatial size. This

is an important difference in perspective compared to [13]. Finally, note that when Np > 1,

it is easy to see, at least in the two center case fully discussed in [13], that the overlap

between the Higgs and Coulomb phases increases. This is reminiscent of the ideas in [50].

Superpotentials: The main limitation of the analysis presented above is that it does not

include quivers with closed loops (e.g. figure 2). Such quivers are generic amongst black hole

microstates, and will give rise to a superpotential for the chiral multiplets. While techniques

for computing this superpotential for branes wrapped on a torus are available [60], the

computation is done on a case by case basis, and will produce cubic and higher terms in

the chiral multiplets. In the Coulomb branch these fields are massive, and the effective

action is computed by integrating them out. Fortunately the contribution to the D-term

equation from this computation is exact at one-loop and thus the superpotential plays

no role in determining the Coulomb branch moduli space. Thus our description of a flow

between supergravity and a gauge theory Coulomb branch as gs is varied is unchanged. On

the Higgs branch, however, a superpotential W will lead to a set of additional constraints,

namely ∂W/∂φapq = 0, within the manifold defined by the D-term equation (4.31). While

this will reduce the dimension of the classical Higgs moduli space, the number of quantum

states could increase, decrease or remain unchanged depending on the cohmology of the

constrained manifold. Unlike the case without closed loops [53], a general formula for

the number of states in the Higgs branch is not available and hence the relation to the

Coulomb branch in this case remains to be studied. In particular, while the analysis in [13]

and above shows that states in the Coulomb branch will flow into the Higgs branch at very

weak coupling, the converse is not obvious.

4.4 Summary and proposal

In [13], Denef suggests that states that flow from the Higgs branch into the Coulomb

branch as the coupling is increased form a class of multi-center solutions separate from

the black hole solutions that describe a large multiplicity of Higgs branch microstates. His

reasons for suggesting this include: (a) the possibility of a complex Higgs branch topology

leading to extra states, and (b) the fact that when there is a closed loop the Coulomb
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Figure 2: A quiver with a closed loop.

branch constraint equation (4.27) has a continuous family of solutions in which the centers

approach each other ever more closely.15 The latter fact suggests that for any gs there

will be some states whose wavefunctions have substantial support on the Higgs branch.

We are proposing a different perspective. In our view, the transverse growth of the size

of a bound state as the system flows from Higgs branch to Coulomb branch to a closed

string description is responsible for the formation of a complex macroscopic structure with

an effective description as a black hole. In this perspective most microstates should enjoy

such a flow and the usual solution with a horizon is simply the effective long-wavelength

description of many complex, spatially extended microscopic bound states [3 – 6, 8 – 12].

5. Discussion

We make two proposals in this article. First, we suggest that every supersymmetric four

dimensional black hole of finite area can be split up into microstates made of primitive

1/2-BPS “atoms”. The non-locality of the charges of these atoms binds these solutions

together. Secondly, we propose that at very weak coupling these states appear as bound

D-branes, but that as the coupling grows the bound state grows a transverse size leading to

a topologically complex spacetime with an effective description as a black hole. At strong

coupling the states form a “foam” in M-theory. To provide evidence for our proposal we

constructed a large class of smooth, horizon-free supergravity solutions with the charges of

four dimensional black holes, and demonstrated a scaling relation that takes them, as gs →
0, from a foam in M-theory, to multi-centered solutions in four-dimensional supergravity,

to states in the D-brane gauge theory, first in the Coulomb branch and then in the Higgs

branch. Our gauge theory analysis extensively used the results of Denef [13], who explicitly

studies the flow of quantum mechanical wavefunctions from Coulomb to Higgs branch in

some examples. We are also proposing that the reverse of this process, the flow of states

from the Higgs branch into the Coulomb branch and then into a closed string description,

15An easy way to see this, is that the left hand side of all constraint equations will always involve at least

two terms with opposite sign and so always have a solution for vanishing separation.
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gs0

D−brane ground state Higgs Branch Coulomb Branch 4D Supergravity
(D6−branes)

5D Spacetime Foam

Figure 3: The different phases as we increase gs.

is responsible for a transverse growth in the size of D-brane bound states as the string

coupling increases, and that this is the link between the D-brane and “spacetime foam”

pictures of black hole microstates.

To prove our proposals there are several further steps that must be taken

1. We must demonstrate that there are enough microstates constructed from 1/2-BPS

“atoms” to account for the known entropy of the black hole carrying the total charge

of the system.

2. We should show that the typical microstate at finite string coupling has a complex

structure out to the horizon scale, but that the detailed microstructure is inaccessible

to a conventional semiclassical observer.

3. We must complete our understanding of the relation of the Coulomb and Higgs

branches of quiver gauge theories, in particular whether spacetime constraints such

as triangle inequalities are realized in the Higgs branch also.

4. We must understand the role of the superpotentials that appear in quivers with closed

loops in determining the structure of the Higgs branch moduli space, and whether

and how this affects the flow of states between these branches as the coupling changes.

While these are challenging problems, solving them is important for understanding the

quantum mechanical states underlying classical spacetimes.
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A. The central charge for α = 0

The calculation of the N = 2 central charge is outlined in [61] and is given by

Zp = Fµp
µ
p −Xµqpµ, (A.1)

where Xµ are the projective coordinates for the four-dimensional scalars

X0 =
−1√
J4

∂J4

∂K0
− iM0 → i as ρ→ ∞,

Xi =
−1√
J4

∂J4

∂Mj
+ iKj → (−1 + iδKj). (A.2)

Fµ = ∂F (X)/∂Xµ is the derivative of the cubic prepotential16

F (X) = −X
1X2X2

X0
. (A.3)

In the conventions of [61] the magnetic and electric charges for the pth brane are given by17

p0 =
L

2
np, pj =

1

2
djp

q0 =
1

2L2

d1
pd

2
pd

3
p

n2
p

, qi = − 1

2L
sijk

djpdkp
2np

. (A.4)

Putting this all together we find

Zp =
L

2
np −

1

2L

∑

i,j,k

sijk
2
npλ

j
pλ

k
p +

i

2
Ψp . (A.5)

The mass of the pth brane is given by

mp =
|Zp|
4G4

. (A.6)

Note that the total central charge is Z =
∑

p Zp, and that

Im[Z] =
1

2

∑

p

Ψp = 0 (A.7)

because of the integrability constraint and the fact that we have set α in (3.3) to zero for

simplicity.

16F takes this simple form as a result of compactifying on T 6 and only turning on the eight charges of

the STU model. A more general case will alter this expression in a straightforward manner.
17The reader will notice that our conventions exchange some electric and magnetic pairs by taking a

series of Hodge duals.
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B. Non-zero α

In general, for non-zero values of α the situation is more complicated as the reduction from

five to four dimensions is now along a fiber of a slightly different magnitude (a similar

situation arises in [23]).

Let us consider how α 6= 0 affects the phase of the central charge Z as defined above.

Note first that the expression Im[Zp] = 1
2Ψp = 2 〈Γp,Γ∞〉 is a trivial consequence of

equations (A.1), (A.2) and the explicit form for the Fµ’s:

F0 =
+1√
J4

∂J4

∂M0
+ iK0, Fi =

−1√
J4

∂J4

∂Kj
+ iKj . (B.1)

This implies that eq. (A.7) still holds, hence the central charge is real and α cannot be it’s

phase! It turns out that the phase α of the central charge used in [27, 29, 13] is defined

in a different gauge, where a Kahler transformation has been used to fix the asymptotic

value of X0 → i. As we will demonstrate, for non-zero α our asymptotic value for X0 is

ie−iα. Rotating this back to the Denef etal.’s gauge implies that the central charge picks

up an overall phase of α. Hence α is the phase of of the central charge in Denef etal.’s

gauge. Note that the expression Ψp = 4 〈Γp,Γ∞〉 is gauge invariant. We will demonstrate

that even for non-zero α the FI terms θp are stil exactly equal to (8G4)
−1Ψp, as expected.

B.1 Redefining the harmonics for α 6= 0

We start by observing that for non-zero α as defined in eq. (3.3) the asymptotic value of

k0 becomes L
2 sinα. This implies that if we left our definitions for the harmonic functions

Mµ,Kµ unchanged, the asymptotic value for J4 would now be cos2 α < 1. To remedy this

situation we need to adjust the reduction of our five-dimensional solution to four dimensions

as follows. First we recognize that the IIA coupling constant is now gsls = L cosα = R,

but we still define the new radial coordinate ρ = 2r/L. The time coordinate now also needs

to be rescaled t(4D) = secα t(5D). The new harmonic functions are:

M0 = − cosαHL2/4, K0 = sec2 α 4K/L, Ki = Lhi, Mi = secαM5D
i , (B.2)

with similar scalings for Γ. With these definitions, J4(x) = I4(H(x)) → 1 at ∞. The

asymptotic value for X0 is now X0 → sinα+ i cosα = ie−iα as previously advertised.

B.2 Checking the FI term

In the gauge of Denef etal., it also possible to write down the individual contribution to

the central charge from each center as:

Zp =
R

2
np
∏

i

(1 + iBi
p) = 4G4mp e

iαp , (B.3)
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where the Bi
p =

(

di
p

Rnp
− δKi

cosα + sinα
cosα

)

are the normalized (F-B) terms on each D6-brane.

This allows to quickly check that we have the right definition for the FI term:

(8G4) θp = 2|Zp| sin(αp − α) (B.4)

= 2|Zp| sinαp cosα− 2|Zp| cosαp sinα

= RnpRe

[

∏

i

(1 + iBi
p)

]

cosα−Rnp Im

[

∏

i

(1 + iBi
p)

]

sinα

= Rnp

[

∑

i

Bi
p −

∏

i

Bi
p

]

cosα−Rnp

[

1 +
∑

i

sijk
2

Bj
pB

k
p

]

sinα

=
np

cosα

(

∑

i

λip −
1

L2

∏

i

λip + 2L sinα

)

= Ψ4D
p = 4 〈Γp,Γ∞〉 = Ψ5D

p / cosα. (B.5)

Here we have differentiated Ψ4D
p = 4 〈Γp,Γ∞〉 which is defined canonically in D = 4 from

the renormalized charge vectors Γp from 5D inspired Ψ5D
p defined by simply adding a

correction term (2Lnp sinα) to the right-hand side of eq. (3.6).
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